
Package: rmaven (via r-universe)
August 13, 2024

Title Run Java Build Tool Maven from R

Version 0.1.3

Description Distributing large files in packages is contrary to 'CRAN'
policies. Java libraries frequently have large dependencies,
and this makes them hard to submit to CRAN. Java has a
sophisticated dependency management tool (Maven) which can
calculate and cache dependencies. Running Maven from R allows
for better integration of Java libraries into R. Maven provides
various options for resolving complied Java code dependencies,
configuring class path, or compiling Java source code, all of
which are useful for efficient use of Java within R.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

Imports fs, magrittr, rappdirs, rlang, stringr, utils, xml2

Suggests rmarkdown, knitr, rJava

URL https://terminological.github.io/rmaven,

https://github.com/terminological/rmaven

VignetteBuilder knitr

Language en-US

RoxygenNote 7.2.3

BugReports https://github.com/terminological/rmaven/issues

Repository https://terminological.r-universe.dev

RemoteUrl https://github.com/terminological/rmaven

RemoteRef 0.1.3

RemoteSha 2bed4e880170761a1e7306a3afe04f60631d52bf

1

https://terminological.github.io/rmaven
https://github.com/terminological/rmaven
https://github.com/terminological/rmaven/issues

2 as.coordinates

Contents
as.coordinates . 2
clear_rmaven_cache . 3
compile_jar . 3
copy_artifact . 4
developer_mode . 5
execute_maven . 6
fetch_artifact . 7
get_repository_location . 8
package_jars . 9
print.coordinates . 10
resolve_dependencies . 10
set_repository_location . 12
start_jvm . 13

Index 15

as.coordinates Maven coordinates

Description

Maven coordinates

Usage

as.coordinates(groupId, artifactId, version, ...)

Arguments

groupId the maven groupId

artifactId the maven artifactId

version the maven version

... other parameters ignored apart from packaging (one of jar,war,pom or ejb) and
classifier (one of tests, client, sources, javadoc, jar-with-dependencies,
or src)

Value

a coordinates object containing the Maven artifact coordinates

Examples

as.coordinates("org.junit.jupiter","junit-jupiter-api","4.13.2")

clear_rmaven_cache 3

clear_rmaven_cache Clear out the rmaven cache

Description

Deletes all content in the rmaven cache. This should not be necessary, but never say never, and if
there is really a problem with the cache, then deleting it may be the best thing. This will wait for con-
firmation from the user. If running unattended the options("rmaven.allow.cache.delete"=TRUE)
must be set for the action to occur, otherwise it will generate a warning and do nothing.

Usage

clear_rmaven_cache()

Value

nothing, called for side effects

Examples

need to set the following option to allow cache to be deleted in non
interactive session
opts = options("rmaven.allow.cache.delete"=TRUE)
clear_rmaven_cache()
options(opts)

compile_jar Compile and package Java code

Description

Compilation will package the Java source code in to a Jar file for further use. It will resolve depen-
dencies and optionally package them into a single uber jar (using maven assembly).

Usage

compile_jar(
path,
nocache = FALSE,
verbose = c("normal", "quiet", "debug"),
with_dependencies = FALSE,
...

)

4 copy_artifact

Arguments

path the path to - either a java source code directory containing a pom.xml file, the
pom.xml file itself, or a ...-src.jar assembled by the maven assembly plugin,

nocache normally compilation is only performed if the input has changed. nocache
forces recompilation

verbose how much output from maven, one of "normal", "quiet", "debug"
with_dependencies

compile the Java code to a ’...-jar-with-dependencies.jar’ including transitive
dependencies which may be easier to embed into R code as does not need a
class path (however may be large if there are a lot of dependencies)

... passed to execute_maven(...), e.g. could include settings parameter

Value

the path to the compiled ’jar’ file. If this is a fat jar this can be passed straight to rJava, otherwise
an additional resolve_dependencies(...) call is required

Examples

This code can take quite a while to run as has to
download a lot of plugins, especially on first run
path = package_jars("rmaven","src")
compile_jar(path,nocache=TRUE)
path2 = system.file("testdata/test-project",package = "rmaven")
compile_jar(path2,nocache=TRUE,with_dependencies=TRUE)

copy_artifact Copy an artifact from a repository to a local directory

Description

This essentially runs a maven-dependency-plugin:copy goal to copy a JAR file from (usually) a
remote repository to a local directory. The directory is under the users control but defaults to the
.m2 repository.

Usage

copy_artifact(
groupId = NULL,
artifactId = NULL,
version = NULL,
...,
coordinates = NULL,
artifact = NULL,
outputDirectory = .working_dir(artifact),

developer_mode 5

repoUrl = .default_repos(),
nocache = FALSE,
verbose = c("normal", "quiet", "debug")

)

Arguments

groupId optional, the maven groupId,

artifactId optional, the maven artifactId,

version optional, the maven version,

... other maven coordinates such as classifier or packaging

coordinates optional, coordinates as a coordinates object,

artifact optional, coordinates as an artifact string groupId:artifactId:version[:packaging[:classifier]]
string

outputDirectory

optional path, defaults to the rmaven cache directory

repoUrl the URLs of the repositories to check (defaults to maven central, Sonatype snaphots
and jitpack)

nocache normally artifacts are only fetched if required, nocache forces fetching

verbose how much output from maven, one of "normal", "quiet", "debug"

Value

the output of the system2 call. 0 on success.

Examples

This code can take quite a while to run as has to
download a lot of plugins, especially on first run
tmp = copy_artifact("org.junit.jupiter","junit-jupiter-api","5.9.0")
print(tmp)

developer_mode Use the default Maven repository location

Description

It should be clear that running this function will affect files in the users filesystem.

Usage

developer_mode()

6 execute_maven

Details

The default Maven directory is located in user space and writing to it is forbidden by CRAN policies.
This plugin is set up to use a cache directory for the local Maven repository but if you are developing
Java code and using it in R then your Java build tools will be installing content to the default Maven
directory, and not the CRAN sanctioned cache. Thus rmaven wont by default be able to pick up
jar files locally installed through standard Java tooling. This function sets the rmaven repository
location to the Maven standard location allowing local jar files to be used. Obviously this is not
portable until the Java packages are deployed to a Maven repository and is only an useful option
during development.

Value

nothing. called for side effects

Examples

set the repository location to the usual location for Java development
developer_mode()

We don't run this above example as it creates an empty directory in the
userspace and doing so in an example violates CRAN principles.

execute_maven Executes a maven goal

Description

Maven goals are defined either as life-cycle goals (e.g. "clean", "compile") or as plugin goals (e.g.
"help:system"). Some Maven goals may be executed without a pom.xml file, others require one.
Some maven goals (e.g. compilation) require the use of a JDK.

Usage

execute_maven(
goal,
opts = c(),
pom_path = NULL,
quiet = .quietly(verbose),
debug = .debug(verbose),
verbose = c("normal", "debug", "quiet"),
require_jdk = FALSE,
settings = .settings_path(),
...

)

fetch_artifact 7

Arguments

goal the goal of the mvn command (can be multiple) e.g. c("clean","compile")

opts provided options in the form c("-Doption1=value2","-Doption2=value2")

pom_path optional. the path to a pom.xml file for goals that need one.

quiet should output from maven be suppressed? (-q flag)

debug should output from maven be verbose? (-X flag)

verbose how much output from maven, one of "normal", "quiet", "debug"

require_jdk does the goal you are executing require a JDK (e.g. compilation does, fetching
artifacts and calculating class path does not)

settings the path to a settings.xml file controlling Maven. The default is a configu-
ration with a local repository in the rmaven cache directory (and not the Java
maven repository).

... non-empty named parameters are passed to maven as options in the form -Dname=value

Value

nothing, invisibly

Examples

This code can take quite a while to run as has to
download a lot of plugins, especially on first run on a clean system
execute_maven("help:system")

fetch_artifact Fetch an artifact, and dependencies, into the local .m2 repository

Description

This can be used to get a JAR file from the maven repositories into a local .m2 repository. The local
path is made available for importing it into the rJava classpath for example.

Usage

fetch_artifact(
groupId = NULL,
artifactId = NULL,
version = NULL,
...,
coordinates = NULL,
artifact = NULL,
repoUrl = .default_repos(),
nocache = FALSE,
verbose = c("normal", "quiet", "debug")

)

8 get_repository_location

Arguments

groupId optional, the maven groupId,

artifactId optional, the maven artifactId,

version optional, the maven version,

... other maven coordinates such as classifier or packaging

coordinates optional, but if not supplied groupId and artifactId must be, coordinates as
a coordinates object (see as.coordinates())

artifact optional, coordinates as an artifact string groupId:artifactId:version[:packaging[:classifier]]
string

repoUrl the URLs of the repositories to check (defaults to Maven central, ’Sonatype’
snapshots and ’jitpack’, defined in options("rmaven.default_repos"))

nocache normally artifacts are only fetched if required, nocache forces fetching

verbose how much output from maven, one of "normal", "quiet", "debug"

Value

the path of the artifact within the local maven cache

Examples

This code can take quite a while to run as has to
download a lot of plugins, especially on first run
fetch_artifact(artifact="com.google.guava:guava:31.1-jre")
fetch_artifact(coordinates = as.coordinates("org.junit.jupiter",

"junit-jupiter-api","5.9.0"))

get_repository_location

Get the location of the Maven repository

Description

In general this function is mainly for internal use but maybe handy for debugging. The maven
repository location can be defined by set_repository_location(...) or through the option
options("rmaven.m2.repository"=...) option but defaults to a .m2/repository directory in
the rmaven cache directory. This is not the default location for Maven when used from Java writing
to the default Maven directory in user space is forbidden by CRAN policies. The result of this is
that rmaven will have to unnecessarily download additional copies of Java libraries, onto the users
computer and cannot re-use already cached copies. Also Maven wont be able to pick up jar files
locally installed through standard Java tooling, unless the default CRAN approved location is over-
ridden using set_repository_location("~/.m2/repository"). This is more of an issue for
developers rather than users.

package_jars 9

Usage

get_repository_location(settings_path = .settings_path())

Arguments

settings_path the file path of the settings.xml to update (generally the supplied default is
what you want to use)

Value

the location of the maven repository

Examples

the default location:
get_repository_location()
change the location to the Java default. This change will not persist between sessions.
opt = options("rmaven.m2.repository"=paste0(tempdir(),"/.m2/repository/"))
set_repository_location()
get_repository_location()
revert to rmaven defaults
options(opt)
set_repository_location()

package_jars Find location of some or all of the jars in a particular package.

Description

Find location of some or all of the jars in a particular package.

Usage

package_jars(
package_name,
types = c("all", "thin-jar", "fat-jar", "shaded", "src")

)

Arguments

package_name the R package name

types the jar types to look for in the package: one of all,thin-jar,fat-jar,shaded,src

Value

a vector of paths to jar files in the package

10 resolve_dependencies

Examples

package_jars("rmaven")
package_jars("rmaven","thin-jar")

print.coordinates Prints a coordinates object

Description

Prints a coordinates object

Usage

S3 method for class 'coordinates'
print(x, ...)

Arguments

x a maven coordinates object

... ignored

Value

nothing. for side effects.

Examples

print(as.coordinates("org.junit.jupiter","junit-jupiter-api","4.13.2"))

resolve_dependencies Resolve dependencies and calculate the classpath for an artifact.

Description

This function makes sure the transitive dependencies for a maven artifact are available locally in the
.m2 maven cache and calculates a local classpath which can be provided to rJava. The artifact may
be specified either as a set of maven coordinates (in which case the artifact itself is also downloaded,
and included in the classpath) or as a path to a jar file containing a pom.xml (e.g. a compiled jar
file, a compiled ...-jar-with-dependencies, or a assembled ...-src.jar).

resolve_dependencies 11

Usage

resolve_dependencies(
groupId = NULL,
artifactId = NULL,
version = NULL,
...,
coordinates = NULL,
artifact = NULL,
path = NULL,
include_self = NULL,
nocache = FALSE,
verbose = c("normal", "quiet", "debug")

)

Arguments

groupId the maven groupId, optional

artifactId the maven artifactId, optional

version the maven version, optional

... passed on to as.coordinates()

coordinates the maven coordinates, optional (either groupId,artifactId and ’version’ must
be specified, or ’coordinates’, or ’artifact’)

artifact optional, coordinates as an artifact string groupId:artifactId:version[:packaging[:classifier]]
string

path the path to the source directory, pom file or jar file. if not given rmaven will get
the artifact from the maven central repositories

include_self do you want include this path in the classpath. optional, if missing the path
will be included if it is a regular jar, or a fat jar, otherwise not.

nocache do not used cached version, by default we use a cached version of the classpath
unless the pom.xml is newer that the cached classpath.

verbose how much output from maven, one of "normal", "quiet", "debug"

Value

a character vector of the classpath jar files (including the current one if appropriate)

Examples

This code can take quite a while to run as has
to download a lot of plugins, especially on first run

classpath would be cached if possible
resolve_dependencies(groupId = "commons-io", artifactId = "commons-io",

version="2.11.0")

forcing download and classpath calculation of an artifact
resolve_dependencies(artifact = "org.junit.jupiter:junit-jupiter-api:5.9.0",

12 set_repository_location

nocache=TRUE)

find the test jar in this package and calculate its stated dependencies
resolve_dependencies(path=

system.file("testdata/test-project-0.0.1-SNAPSHOT.jar",package="rmaven"))

find the test source code jar in this package and calculate its stated
dependencies
resolve_dependencies(path=

system.file("testdata/test-project-0.0.1-SNAPSHOT-src.jar",
package="rmaven")

)

set_repository_location

Sets the local maven repository location

Description

This writes a maven repository location to a temporary settings.xml file which persists only for
the R session. The location of the maven repository is either specified here, or can be defined by
the options("rmaven.m2.repository"=...) option. If neither of these is provided, the location
will revert to a default location within the rmaven cache. (Approved by CRAN for a local cache
location) e.g. on ’Linux’ this will default to ~/.cache/rmaven/.m2/repository/

Usage

set_repository_location(
repository_location = getOption("rmaven.m2.repository", default = .working_dir(subpath

= ".m2/repository/")),
settings_path = .settings_path()

)

Arguments

repository_location

a file path (which will be expanded to a full path) where the repository should
be based, e.g. ~/.m2/repository/. Defaults to a sub-directory of the rmaven
cache.

settings_path the file path of the settings.xml to update (generally the supplied default is what
you want to use)

Value

the expanded path of the new repository location

start_jvm 13

Examples

Setting the repository to be a temp dir as an example:
set_repository_location(paste0(tempdir(), "/.m2/repository"))
you would never want to do this in real life as then the maven repository
would be rebuilt on every new R session.

set the repository location to the usual location for Java development
set_repository_location("~/.m2/repository")
We don't run this above example as it creates an empty directory in the
userspace and doing so in an example violates CRAN principles.

set the repository location back to the CRAN approved default location
set_repository_location()

start_jvm Start an rJava JVM with or without debugging options

Description

This does not do anything if the JVM has already been started. Otherwise starts the JVM via
rJava with a set of options Additional JVM options (beyond debugging) can be set with the
options("java.parameters"=c("-Xprof","-Xrunhprof"))

Usage

start_jvm(
debug = FALSE,
quiet = getOption("rmaven.quiet", TRUE),
max_heap = NULL,
thread_stack = NULL,
...

)

Arguments

debug turn on debugging

quiet don’t report messages (defaults to getOption("rmaven.quiet") or TRUE)

max_heap optional. if a string like "2048m" the -Xmx option value to start the JVM -
if a string like "75%" the -XX:MaxRAMPercentage, if a numeric - number of
megabytes.

thread_stack optional. sensible values range from ’1m’ to ’128m’ (max is ’1g’). Can be
important with deeply nested structures.

... any other named parameters are passed as -name=value

Value

nothing - called for side effects

14 start_jvm

Examples

start_jvm()
Not run:
this may try to rebind debugging port
start_jvm(debug = TRUE)

End(Not run)

Index

as.coordinates, 2

clear_rmaven_cache, 3
compile_jar, 3
copy_artifact, 4

developer_mode, 5

execute_maven, 6

fetch_artifact, 7

get_repository_location, 8

package_jars, 9
print.coordinates, 10

resolve_dependencies, 10

set_repository_location, 12
start_jvm, 13

15

	as.coordinates
	clear_rmaven_cache
	compile_jar
	copy_artifact
	developer_mode
	execute_maven
	fetch_artifact
	get_repository_location
	package_jars
	print.coordinates
	resolve_dependencies
	set_repository_location
	start_jvm
	Index

