
Package: pkgtools (via r-universe)
September 19, 2024

Title Code generation and linting functions for R packages

Version 0.0.1

Description Perform common tasks and fix common errors in project and
package development. This is a developer tool rather than an
end user package.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

URL https://terminological.github.io/pkgtools/index.html,

https://github.com/terminological/pkgtools

BugReports https://github.com/terminological/pkgtools/issues

Imports desc, devtools, dplyr, forcats, fs, gert, here, magrittr,
pkgload, purrr, readr, remotes, stringi, stringr, tibble,
tidyr, rlang, withr, rmarkdown, renv, jsonlite, usethis

Suggests rstudioapi, diffobj

Repository https://terminological.r-universe.dev

RemoteUrl https://github.com/terminological/pkgtools

RemoteRef 0.0.1

RemoteSha 4d56d968f194ea9c432cc29af63e7b60b9af7ebc

Contents
bump_dev_version . 2
delete_backups . 2
fix_dependencies . 3
fix_global_variables . 3
fix_non_standard_files . 4
fix_unqualified_fns . 4
fix_unqualified_fns_bulk . 5

1

https://terminological.github.io/pkgtools/index.html
https://github.com/terminological/pkgtools
https://github.com/terminological/pkgtools/issues

2 delete_backups

fix_utf8_encoding . 5
install_local . 6
qcheck . 7
set_renv_repos . 8
unstable . 9
use_standalone . 11
what_has_changed . 12

Index 14

bump_dev_version Update the version of a package, incrementing dev versions.

Description

This makes no checks and accepts no responsibility. No backups are made.

Usage

bump_dev_version(pkg = ".")

Arguments

pkg the path to the package

Value

the new version

delete_backups Delete backup files from the current project

Description

Delete backup files from the current project

Usage

delete_backups(pkg = ".")

Arguments

pkg the package to delete files from.

Value

nothing

fix_dependencies 3

fix_dependencies Fixes dependencies in the namespace file using the output of R CMD
check.

Description

Fixes dependencies in the namespace file using the output of R CMD check.

Usage

fix_dependencies(pkg = ".", check)

Arguments

pkg the package to scan

check output of a devtools::check() command ()

Value

a list of the

fix_global_variables Adds global variables identified at R CMD check“ to a globals.R‘
file

Description

Adds global variables identified at R CMD check`` to a globals.R‘ file

Usage

fix_global_variables(pkg = ".", check)

Arguments

pkg the package location

check the results of a devtools::check

Value

nothing

4 fix_unqualified_fns

fix_non_standard_files

Adds non standard and hidden files to the .Rbuildignore file

Description

Adds non standard and hidden files to the .Rbuildignore file

Usage

fix_non_standard_files(pkg = ".", check)

Arguments

pkg the package location

check the results of a devtools::check

Value

nothing

fix_unqualified_fns Fix unqualified functions in active source pane

Description

Interactively find and replace unqualified, e.g. mutate(...) calls with fully qualified dplyr::mutate(...)
calls.

Usage

fix_unqualified_fns()

Value

nothing - called for side effects

fix_unqualified_fns_bulk 5

fix_unqualified_fns_bulk

Fix errors introduced in package creation by forgetting to qualify
namespaces.

Description

This is a code linting function and expected to be called at the console during package development.
It will scan the files in the current project and replace unqualified references to e.g. mutate with
ones to dplyr::mutate etc.

Usage

fix_unqualified_fns_bulk(
pkg = ".",
rDirectories = c(here::here("R"), here::here("tests/testthat")),
dry_run = FALSE,
prioritise = c("dplyr", "rlang", "stringr", "forcats", "ggplot2", "purrr", "tidyr",

"readr", "stats", "utils")
)

Arguments

pkg the package

rDirectories the locations of the R code to fix (by default R scripts, and tests, but not vi-
gnettes)

dry_run by default this function will not actually do anything unless this is set to FALSE.
However the dry run output can be manually compared with a diff tool to inter-
actively accept changes.

prioritise a list of package names to pick from first

Value

nothing. called for side effects.

fix_utf8_encoding Fixes utf8 encoded characters in source files replaincg them with
\uXXXX

Description

Fixes utf8 encoded characters in source files replaincg them with \uXXXX

6 install_local

Usage

fix_utf8_encoding(pkg = ".", check, dry_run = FALSE)

Arguments

pkg the package to scan
check output of a devtools::check() command ()
dry_run test changes without breaking originals.

Value

nothing

install_local Install package locally using renv if available.

Description

devtools::install_local does not play well with renv in this version of install_local we
intercept installation of locally developed packages when we are in a renv managed project and
installing a local dependency, it builds a source project into renv cellar and installs it from there.
This allows a copy of a locally developed package to be deployed with the renv managed analysis
project without specifically being deployed to CRAN or r-universe.

Usage

install_local(
path = ".",
...,
force = TRUE,
upgrade = "never",
quiet = TRUE,
wd = here::here()

)

Arguments

path path to local directory, or compressed file (tar, zip, tar.gz tar.bz2, tgz2 or tbz)
... Other arguments passed on to utils::install.packages().
force Force installation, even if the remote state has not changed since the previous

install.
upgrade Should package dependencies be upgraded? One of "default", "ask", "always",

or "never". "default" respects the value of the R_REMOTES_UPGRADE environment
variable if set, and falls back to "ask" if unset. "ask" prompts the user for which
out of date packages to upgrade. For non-interactive sessions "ask" is equivalent
to "always". TRUE and FALSE are also accepted and correspond to "always" and
"never" respectively.

qcheck 7

quiet If TRUE, suppress output.

wd the project root directory of the current project (defaults to here::here())

Details

If installed locally for a non-renv project (e.g. a package development) the usual behaviour applies
to version management. Installation of new versions of the project will happen when the package
is released and then installed from the release location (e.g. github, cran, r-universe).

If a locally developed package is deployed to an renv project once it is released onto a valid distribu-
tion platform e.g. CRAN, r-universe or github, we will want to use that version in out renv. This we
can do using the rebuild = TRUE option of renv::install, e.g.: renv::install(...pkg name/github..., repo = ...r-universe?..., rebuild = TRUE)
followed by a renv::snapshot() to update the lock file. The locally built package version will re-
main in the <projroot>/renv/local cellar until removed by hand.

See Also

Other package installation: install_bioc(), install_bitbucket(), install_cran(), install_dev(),
install_github(), install_gitlab(), install_git(), install_svn(), install_url(), install_version()

Examples

Not run:
dir <- tempfile()
dir.create(dir)
pkg <- download.packages("testthat", dir, type = "source")
install_local(pkg[, 2])

End(Not run)

qcheck Check the package structure without running any code

Description

Check the package structure without running any code

Usage

qcheck(pkg = ".", ..., args = "", quiet = FALSE)

Arguments

pkg the path of the package to check

... Arguments passed on to devtools::check

document By default (NULL) will document if your installed roxygen2 version
matches the version declared in the DESCRIPTION file. Use TRUE or FALSE
to override the default.

8 set_renv_repos

build_args Additional arguments passed to R CMD build

manual If FALSE, don’t build and check manual (--no-manual).
cran if TRUE (the default), check using the same settings as CRAN uses. Be-

cause this is a moving target and is not uniform across all of CRAN’s ma-
chine, this is on a "best effort" basis. It is more complicated than simply
setting --as-cran.

remote Sets _R_CHECK_CRAN_INCOMING_REMOTE_ env var. If TRUE, performs a
number of CRAN incoming checks that require remote access.

incoming Sets _R_CHECK_CRAN_INCOMING_ env var. If TRUE, performs a num-
ber of CRAN incoming checks.

force_suggests Sets _R_CHECK_FORCE_SUGGESTS_. If FALSE (the default),
check will proceed even if all suggested packages aren’t found.

run_dont_test Sets --run-donttest so that examples surrounded in \donttest{}
are also run. When cran = TRUE, this only affects R 3.6 and earlier; in R
4.0, code in \donttest{} is always run as part of CRAN submission.

env_vars Environment variables set during R CMD check

check_dir Path to a directory where the check is performed. If this is not NULL,
then the a temporary directory is used, that is cleaned up when the returned
object is garbage collected.

cleanup [Deprecated] See check_dir for details.
vignettes If FALSE, do not build or check vignettes, equivalent to using args = '--ignore-vignettes' and build_args

= ’–no-build-vignettes’.
error_on Whether to throw an error on R CMD check failures. Note that the

check is always completed (unless a timeout happens), and the error is only
thrown after completion. If "never", then no errors are thrown. If "error",
then only ERROR failures generate errors. If "warning", then WARNING fail-
ures generate errors as well. If "note", then any check failure generated an
error. Its default can be modified with the RCMDCHECK_ERROR_ON environ-
ment variable. If that is not set, then "never" is used.

args additional r cmd check args

quiet do it without producing messages

Value

a check result

set_renv_repos Adds new repositories to the beginning of an renv lockfile

Description

Sets custom repositories (e.g. r-universe repositories) in a renv lockfile to override CRAN reposi-
tories. This is a persistent change can be undone by manual editing of the lockfile.

unstable 9

Usage

set_renv_repos(..., .wd = here::here())

Arguments

... a named list of repository urls

.wd the working directory (defaults to here::here())

Value

nothing

unstable Reload a set of packages that are in development on the local machine

Description

Vignette building uses a new session. Any changes in current project or dependent locally developed
projects are not tested unless the packages are all installed using devtools::install_local(...).
This causes problems when developing multiple packages in parallel.

Usage

unstable(
path = ".",
...,
force = TRUE,
upgrade = "never",
quiet = TRUE,
load_lib = TRUE

)

Arguments

path the package local development repository path. This assumes you have all your
other package code in a sibling directory, e.g. ~/Git/pkg1, ~/Git/pkg2

... Arguments passed on to remotes::install_local

subdir subdirectory within url bundle that contains the R package.
dependencies Which dependencies do you want to check? Can be a character

vector (selecting from "Depends", "Imports", "LinkingTo", "Suggests", or
"Enhances"), or a logical vector.
TRUE is shorthand for "Depends", "Imports", "LinkingTo" and "Suggests".
NA is shorthand for "Depends", "Imports" and "LinkingTo" and is the de-
fault. FALSE is shorthand for no dependencies (i.e. just check this package,
not its dependencies).
The value "soft" means the same as TRUE, "hard" means the same as NA.

10 unstable

You can also specify dependencies from one or more additional fields, com-
mon ones include:

• Config/Needs/website - for dependencies used in building the pkgdown
site.

• Config/Needs/coverage for dependencies used in calculating test cov-
erage.

build If TRUE build the package before installing.
build_opts Options to pass to R CMD build, only used when build is TRUE.
build_manual If FALSE, don’t build PDF manual (’–no-manual’).
build_vignettes If FALSE, don’t build package vignettes (’–no-build-vignettes’).
repos A character vector giving repositories to use.
type Type of package to update.

force Force installation, even if the remote state has not changed since the previous
install.

upgrade Should package dependencies be upgraded? One of "default", "ask", "always",
or "never". "default" respects the value of the R_REMOTES_UPGRADE environment
variable if set, and falls back to "ask" if unset. "ask" prompts the user for which
out of date packages to upgrade. For non-interactive sessions "ask" is equivalent
to "always". TRUE and FALSE are also accepted and correspond to "always" and
"never" respectively.

quiet If TRUE, suppress output.
load_lib load the package using a library command

Details

This function assumes the path variable is a path to a package which is under version control in a Git
directory. Other dependencies to this package may also be under development in sibling directories.
The aim is to install the current version of the target package and all locally held dependencies that
have changed on the local disk compared to the locally installed version.

This function scans the current package and first order dependencies, looking for local development
directories for any packages imported. Looks for changes in files in local development directories
of package and first order dependencies versus files currently installed in r-library. If it finds any
differences it checks if there is a version change of the package, bumps the version number of the
development package, and installs it locally, After installation it restarts R.

Any recent file change in development directories triggers a dev version bump and local package
installation. After a call to unstable() any dependencies in your local dev environment are up to
date.

If unstable is called from within a non package project which is using renv then rather than
installing locally using devtools the package is built and deployed locally in the renv local package
directory (<proj root>/renv/local) and installed from there. The renv local packages are
placed under version control. At the moment it is a manual job to tidy this up once the development
package is finalised and deployed

Value

nothing

use_standalone 11

use_standalone Extended version of use_standalone that works with renv projects

Description

usethis::use_standalone is a package development tool used in r-lib to share useful functions
between packages without creating a hard dependency on them. This is also useful in data analysis
projects where no package infrastructure exists but you want to reuse common functions (e.g. plot
themes) between analysis projects. Developing a package containing these shared functions and
deploying to CRAN or r-universe but it is unwieldy and requires more infrastructure that needed.

Usage

use_standalone(repo_spec, file = NULL, ref = NULL, host = NULL)

Arguments

repo_spec A string identifying the GitHub repo in one of these forms:

• Plain OWNER/REPO spec
• Browser URL, such as "https://github.com/OWNER/REPO"
• HTTPS Git URL, such as "https://github.com/OWNER/REPO.git"
• SSH Git URL, such as "git@github.com:OWNER/REPO.git"

file Name of standalone file. The standalone- prefix and file extension are op-
tional. If omitted, will allow you to choose from the standalone files offered by
that repo.

ref The name of a branch, tag, or commit. By default, the file at path will be
copied from its current state in the repo’s default branch. This is extracted from
repo_spec when user provides a URL.

host GitHub host to target, passed to the .api_url argument of gh::gh(). If repo_spec
is a URL, host is extracted from that.
If unspecified, gh defaults to "https://api.github.com", although gh’s default can
be customised by setting the GITHUB_API_URL environment variable.
For a hypothetical GitHub Enterprise instance, either "https://github.acme.com/api/v3"
or "https://github.acme.com" is acceptable.

Details

Using a standalone file we can develop these functions in a basic git repository with no deployment
(with or without package infrastructure), and import them into a project as standalone files. From
a reproducibility point of view this is sometimes beneficial as the version is hard wired into the
analysis project.

The use cases supported by usethis are predicated around R package development but here we
extend this behaviour to analysis projects with dependencies managed by renv.

12 what_has_changed

Supported fields

A standalone file has YAML frontmatter that provides additional information, such as where the file
originates from and when it was last updated. Here is an example:

repo: r-lib/rlang
file: standalone-types-check.R
last-updated: 2023-03-07
license: https://unlicense.org
dependencies: standalone-obj-type.R
imports: rlang (>= 1.1.0)

Two of these fields are consulted by `use_standalone()`:

- `dependencies`: A file or a list of files in the same repo that
the standalone file depends on. These files are retrieved
automatically by `use_standalone()`.

- `imports`: A package or list of packages that the standalone file
depends on. A minimal version may be specified in parentheses,
e.g. `rlang (>= 1.0.0)`. These dependencies are passed to
[use_package()] to ensure they are included in the `Imports:`
field of the `DESCRIPTION` file.

Note that lists are specified with standard YAML syntax, using
square brackets, for example: `imports: [rlang (>= 1.0.0), purrr]`.

[use_package()]: R:use_package()
[rlang (>= 1.0.0), purrr]: R:rlang%20(%3E=%201.0.0),%20purrr

Examples

Not run:
use_standalone("r-lib/rlang", file = "types-check")
use_standalone("r-lib/rlang", file = "types-check", ref = "standalone-dep")

End(Not run)

what_has_changed Compare content of editor with last saved version

Description

Compare content of editor with last saved version

what_has_changed 13

Usage

what_has_changed()

Value

nothing

Index

bump_dev_version, 2

delete_backups, 2
devtools::check, 7

fix_dependencies, 3
fix_global_variables, 3
fix_non_standard_files, 4
fix_unqualified_fns, 4
fix_unqualified_fns_bulk, 5
fix_utf8_encoding, 5

gh::gh(), 11

install_bioc, 7
install_bitbucket, 7
install_cran, 7
install_dev, 7
install_git, 7
install_github, 7
install_gitlab, 7
install_local, 6
install_svn, 7
install_url, 7
install_version, 7

qcheck, 7

remotes::install_local, 9

set_renv_repos, 8

unstable, 9
use_standalone, 11
utils::install.packages(), 6

what_has_changed, 12

14

	bump_dev_version
	delete_backups
	fix_dependencies
	fix_global_variables
	fix_non_standard_files
	fix_unqualified_fns
	fix_unqualified_fns_bulk
	fix_utf8_encoding
	install_local
	qcheck
	set_renv_repos
	unstable
	use_standalone
	what_has_changed
	Index

